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Abstract

Benford’s Law (BL) or the Significant Digit Law defines the probability distribution
of the first digit of numerical values in a data sample. This Law is observed in many
datasets. It can be seen as a measure of naturalness of a given distribution and finds
its application in areas like anomaly and fraud detection. In this work, we address
the following question: Is the distribution of the Neural Network parameters related
to the network’s generalization capability? To that end, we first define a metric,
MLH (Model Enthalpy), that measures the closeness of a set of numbers to BL.
Second, we use MLH as an alternative to Validation Accuracy for Early Stopping
and provide experimental evidence that even if the optimal size of the validation set
is known beforehand, the peak test accuracy attained is lower than early stopping
with MLH i.e. not using a validation set at all.

1 Introduction and Related Works

Benford’s Law (BL) has been observed in many naturally occurring populations, including the
physical constants, populations of countries, areas of lakes, stock market indices, tax accounts,
etc. [1]. Researchers have also discovered the presence of this law in natural sciences [2], image
gradient magnitude [3], synthetic and natural images [4], etc. Attempts have been made to explain
the underlying reason for BL’s emergence for specific domains. However, a universally accepted
explanation does not yet exist. The fact that BL occurs in many naturally occurring datasets, and
the samples which don’t not obey BL are probable anomalies, is one of the reasons why BL is also
known as "The Law of Anomalous Numbers". Due to this, BL has been used to ascertain fraud in
taxing and accounting and for Anomaly Detection in the machine learning literature, such as detecting
GAN-generated images [5].

Figure 1: (Left to Right) Training accuracy, validation accuracy and MLH against training iterations.
At around 1K iterations, the validation accuracy drops, while the training accuracy reaches 1.

∗The Learning Machines is an independent student-driven research group. Github: https://github.com/
The-Learning-Machines

Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021).

https://github.com/The-Learning-Machines
https://github.com/The-Learning-Machines


1.1 Thermodynamics of Machine Learning

Previous work has established the formal connection of Thermodynamics and machine learning.
[6] define four information-theoretic functionals, out of which, we focus on Relative Entropy S.
It measures the entropy between the distribution p(θ|X,Y ) that is assigned after training on data
(X,Y ) and prior q(θ) for model parameters θ. S can measure the risk of overfitting the parameters.
The authors claim, this measure is intractable.

S ≡ log
p(θ|X,Y )

q(θ)
(1)

1.2 Free-Energy Principle and Information Criteria

Free-Energy Principle [7] is a well-known principle that tries to explain the mechanism of learning
and behaviour in living beings (referred to as "agents"). This principle states that agents take actions
to sensory input, and its own internal state through an internal model of the world. This model is
updated based on the outcome of the action. The learning objective, according to the Free-Energy
Principle, is to minimize "surprise" in addition to minimizing the complexity of the learned model.

Information-based Criteria are used frequently for model selection in the ML Community.
Bayesian Information Criterion (BIC) and Akaike Information Criteria (AIC) [8] are some of the
widely-used criteria for model selection.

AIC(m) = −2 logL(m) + 2p(m) (2)

BIC(m) = −2 logL(m) + 2p(m) log n (3)

where m is a model, L(m) is the error of the model m, p(m) is the number of parameters of m,
and n is the number of data-points used to learn m. Here, the number of parameters is used as the
measure of model complexity.

In this work, we show that the metric we propose, MLH, could be a measure of model complexity,
and hence use Free-Energy Principle for Early stopping using MLH.

2 Model Enthalpy

BL defines a probability distribution of a given sample’s significant (leftmost) digit. The leftmost
non-zero digit’s occurrence in the observations of a population is log-uniform for several datasets,
with 1 occurring the maximum number of times, followed by 2, 3, till 9. According to Benford’s Law
(BL) [9], the probability for a sample having a significant digit d is given as follows:

PB = P (d) = log10(1 +
1

d
), d = 1, 2, 3, ..., 9 (4)

We hypothesize that Neural Network weights might follow BL, similar to the pixels of RGB images.
To that end, we devise a simple metric to measure the similarity of histograms of significant digits of
model parameters. We define a metric called Model Enthalpy (MLH), that measures the correlation
between Benford’s Law and histogram of significant digits of a given set. MLH is based on the
Pearson’s Correlation Coefficient [10] is defined as follows:

MLH(θ) = PearsonR(BinCount(θ), PB) (5)

BinCount(θ) =
[f0, f1, ..., f9]

Dθ
(6)

Here, BinCount(θ) is the distribution of Significant Digits of network parameter set θ. PB is the
distribution defined by BL, fk is is the frequency of significant digit k occurring in θ, Dθ is the
dimensionality of θ. We did not include parameters that are initialized with a constant value, such
as Bias and BatchNorm parameters. In our implementation, we multiply all elements in the set by
a constant 1010 so that the resultant elements are greater than zero, and then take the first non-zero
digit. This representation is required for a fast vectorized implementation of BinCount(.). Note that
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Figure 2: Comparison of Test Accuracies using (Red) where MLH is used as an Early Stopping
criterion and (Blue) where validation proportions are used to dictate Early Stopping. We can observe
that there is a noticeable difference in test accuracy for the methods and validation proportions used
for early stopping. This indicates that MLH contains information about generalization capability of
this model.

multiplying with a constant scalar doesn’t change the distribution of significant digits due to BL’s
property of Scale Invariance [11].

In Fig. 1, we train over 100 shallow AlexNet-like models on CIFAR10 and track metrics during
training iterations. It can be clearly seen that the proposed metric, MLH traces a similar trajectory as
the Validation Accuracy.

3 Early Stopping with MLH

In this section, we present a direct application of MLH. In the previous section, we established that
MLH is strongly correlated to validation accuracy. We use this result to replace validation set-based
criteria for Early Stopping, while using the data saved as additional training data.

In Early Stopping, the stopping criterion is monitored throughout the training procedure, and if
a certain predefined condition involving the criterion is met, the training is stopped. Usually, the
criterion used is the accuracy on the validation set. Early Stopping based on validation set criteria
require a validation set to be split off from the training data, which, depending on the size, results
in a significant reduction in the amount of available training data. The size of the validation set can
also be seen as a hyperparameter. Larger validation sets can result in poorer models due to lower
amounts of training data. On the other hand, smaller validation sets can result in inaccurate estimates
of generalization performance, and the criteria being unreliable, leading to premature or late stopping.
The optimal size of the validation set finds the best trade-off, as observed in Fig. 2. But finding this
optimal size of the validation set is non-trivial and requires multiple training runs.

For the experiments in this section, we use the publicly available CIFAR10 dataset, and a smaller
AlexNet-like model without dropout to make sure the models overfit and hence make our observations
concrete. We do a sweep of various validation set sizes and use Validation Accuracy as the Early
Stopping metric. For each setting, we train 100 such models for computing confidence intervals2. Fig.
2 (Blue) illustrates the validation set size trade-off. For one set of models, Fig. 2 (Red), we use MLH
as the Early Stopping criterion, and include validation data for training. Fig. 2 shows that even if the
practitioner knows the optimal validation set size beforehand, the mean test accuracy is noticeably
lower than when not using a validation set at all.

With the evidence presented in this section, we believe that MLH is strongly related to Eq. 1, because
S measures the log-ratio of distribution over parameters, p and prior q. In the case of MLH, we

2The experiments can be reproduced with one day of compute on an RTX 3060 GPU.

3



Figure 3: We train DenseNet121 with 7M parameters on four datasets. (Left) Training Accuracy of
the architecture v/s. Training steps. Note that Training Accuracy reaches to 1. (Right) Validation
Accuracy v/s. Training steps. We note that for the duration of 200 epochs, the model’s Validation
Accuracy doesn’t fall significantly, if at all, contrary to AlexNet-like model in Fig. 1.

Figure 4: (Left) MLH of Energy states at different values of Temperature T . (Right) MLH of
DenseNet121 weights on multiple datasets. We expected a different behaviour from Fig. 1, since
there was no overfitting observed in Fig. 3.

assume the prior over parameters to be Benford’s Law, i.e q ∼= PB . This would suggest that S is
approximated by MLH. We hope to rigorously investigate this in the future. Assuming MLH is
indeed a measure of model complexity, in the Early Stopping experiment, we were maximizing the
Training Accuracy and MLH (higher MLH means lower overfitting), and hence the connection to
Free-Energy Principle [7].

4 MLH and Deep Neural Networks

In the previous sections, we used shallow Alexnet-Like networks that were prone to overfitting.
Recent work has shown that larger and deeper neural network architectures are robust to overfitting
[12]. As observed in Figures 3 & 4 (Right), when we swap out the smaller AlexNet-like model with a
larger DenseNet-121, we observe that the model doesn’t overfit, i.e. the training loss reaches zero,
however validation accuracy doesn’t drop, instead plateaus, contrary to the shallow network. Due to
this, we expect the behaviour of MLH to change. In Fig. 4, MLH oscillates for a deeper DenseNet121
architecture; we note this observation on multiple datasets. We believe that this distinct behaviour of
MLH on shallow and deeper models (that don’t overfit) support our hypothesis that MLH might be an
indicator of generalization. However, MLH can not be used for Early Stopping for deeper networks
in the way we in Sec. 3. We hope to explore deeper, state-of-the-art models in the future.

We connect this oscillatory pattern of MLH to a contribution by [1] where they find that for systems
following Boltzmann-Gibbs statistics, such as an ideal gas in a sealed chamber, the mantissa distribu-
tion of energy states of particles oscillates around BL with change in temperature. This is illustrated
by Fig. 4 (Left). Here, we run a simulation where we sample a large number of Energy states at a
Temperature T with the probability density function for an energy state E from [1],

f(E) =
1

kT
e−

E
kT (7)

Here, k is the Boltzmann Constant. We compute MLH of energies at 1/kT = 0.1 to 1/kT = 10 at
10000 equally-spaced values. Fig. 4 (Left) shows how MLH changes as a function of temperature T
which strikingly resembles Fig. 4 (Right), where we plot 4 models trained on 4 different datasets
[13, 14, 15, 16] and compute MLH of their weights.

Throughout this work, we assumed that MLH is a measure of model complexity, however, explaining
why MLH contains this information would possibly also require us to answer why BL even emerges
in the first place, which has remained unexplained since the phenomenon was discovered nearly two
centuries ago.
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5 Conclusion and Impact Statement

The research question of this work was: "Is Benford’s Law related to Generalization in Neural
Networks?". We first make the observation that Benford’s Law is observed by weights of Neural
Networks, and then study how closeness to BL changes during training. We show with strong
evidence that BL is associated with generalization performance of a shallow Neural Network and
hence, we use it as a replacement to validation metrics, eliminating the need of a validation set. We
then study MLH on deeper networks which are robust to overfitting, where-in we observe a very
different behaviour of MLH, which oscillates. To the best of our knowledge, this is the first work that
shows the important connection of Benford’s Law and Neural Networks, which can have potential
applications, and may lead to a better understanding of nature of learning in Neural Networks and its
possible connection to thermodynamics.
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